87 research outputs found

    Two-qubit correlations revisited: average mutual information, relevant (and useful) observables and an application to remote state preparation

    Get PDF
    Understanding how correlations can be used for quantum communication protocols is a central goal of quantum information science. While many authors have linked global measures of correlations such as entanglement or discord to the performance of specific protocols, in general the latter may require only correlations between specific observables. In this work, we first introduce a general measure of correlations for two-qubit states based on the classical mutual information between local observables. We then discuss the role of the symmetry in the state's correlations distribution and accordingly provide a classification of maximally mixed marginals states (MMMS). We discuss the complementarity relation between correlations and coherence. By focusing on a simple yet paradigmatic example, i.e., the remote state preparation protocol, we introduce a method to systematically define proper protocol-tailored measures of correlations. The method is based on the identification of those correlations that are relevant (useful) for the protocol. The approach allows on one hand to discuss the role of the symmetry of the correlations distribution in determining the efficiency of the protocol, both for MMMS and general two-qubit quantum states, and on the other hand to devise an optimized protocol for non-MMMS that can have a better efficiency with respect to the standard one. The scheme we propose can be extended to other communication protocols and more general bipartite settings. Overall our findings clarify how the key resources in simple communication protocols are the purity of the state used and the symmetry of correlations distribution.Comment: Revised Figures, improved notation and clearer text to better highlight the main finding

    Global coherence of quantum evolutions based on decoherent histories: theory and application to photosynthetic quantum energy transport

    Get PDF
    Assessing the role of interference in natural and artificial quantum dyanamical processes is a crucial task in quantum information theory. To this aim, an appopriate formalism is provided by the decoherent histories framework. While this approach has been deeply explored from different theoretical perspectives, it still lacks of a comprehensive set of tools able to concisely quantify the amount of coherence developed by a given dynamics. In this paper we introduce and test different measures of the (average) coherence present in dissipative (Markovian) quantum evolutions, at various time scales and for different levels of environmentally induced decoherence. In order to show the effectiveness of the introduced tools, we apply them to a paradigmatic quantum process where the role of coherence is being hotly debated: exciton transport in photosynthetic complexes. To spot out the essential features that may determine the performance of the transport we focus on a relevant trimeric subunit of the FMO complex and we use a simplified (Haken-Strobl) model for the system-bath interaction. Our analysis illustrates how the high efficiency of environmentally assisted transport can be traced back to a quantum recoil avoiding effect on the exciton dynamics, that preserves and sustains the benefits of the initial fast quantum delocalization of the exciton over the network. Indeed, for intermediate levels of decoherence, the bath is seen to selectively kill the negative interference between different exciton pathways, while retaining the initial positive one. The concepts and tools here developed show how the decoherent histories approach can be used to quantify the relation between coherence and efficiency in quantum dynamical processes.Comment: 13 papges, 9 figure

    Non-Gaussian quantum discord for Gaussian states

    Full text link
    In recent years the paradigm based on entanglement as the unique measure of quantum correlations has been challenged by the rise of new correlation concepts, such as quantum discord, able to reveal quantum correlations that are present in separable states. It is in general difficult to compute quantum discord, because it involves a minimization over all possible local measurements in a bipartition. In the realm of continuous variable (CV) systems, a Gaussian version of quantum discord has been put forward upon restricting to Gaussian measurements. It is natural to ask whether non-Gaussian measurements can lead to a stronger minimization than Gaussian ones. Here we focus on two relevant classes of two-mode Gaussian states: squeezed thermal states (STS) and mixed thermal states (MTS), and allow for a range of experimentally feasible non-Gaussian measurements, comparing the results with the case of Gaussian measurements. We provide evidence that Gaussian measurements are optimal for Gaussian states.Comment: 12 pages, 9 figures (3 appendices

    Algebraic synthesis of time-optimal unitaries in SU(2) with alternating controls

    Get PDF
    We present an algebraic framework to study the time-optimal synthesis of arbitrary unitaries in SU(2), when the control set is restricted to rotations around two non-parallel axes in the Bloch sphere. Our method bypasses commonly used control-theoretical techniques, and easily imposes necessary conditions on time-optimal sequences. In a straightforward fashion, we prove that time-optimal sequences are solely parametrized by three rotation angles and derive general bounds on those angles as a function of the relative rotation speed of each control and the angle between the axes. Results are substantially different whether both clockwise and counterclockwise rotations about the given axes are allowed, or only clockwise rotations. In the first case, we prove that any finite time-optimal sequence is composed at most of five control concatenations, while for the more restrictive case, we present scaling laws on the maximum length of any finite time-optimal sequence. The bounds we find for both cases are stricter than previously published ones and severely constrain the structure of time-optimal sequences, allowing for an efficient numerical search of the time-optimal solution. Our results can be used to find the time-optimal evolution of qubit systems under the action of the considered control set, and thus potentially increase the number of realizable unitaries before decoherence

    The role of initial entanglement and nonGaussianity in the decoherence of photon number entangled states evolving in a noisy channel

    Full text link
    We address the degradation of continuous variable (CV) entanglement in a noisy channel focusing on the set of photon-number entangled states. We exploit several separability criteria and compare the resulting separation times with the value of non-Gaussianity at any time, thus showing that in the low-temperature regime: i) non-Gaussianity is a bound for the relative entropy of entanglement and ii) Simon' criterion provides a reliable estimate of the separation time also for nonGaussian states. We provide several evidences supporting the conjecture that Gaussian entanglement is the most robust against noise, i.e. it survives longer than nonGaussian one, and that this may be a general feature for CV systems in Markovian channels.Comment: revised version, title and figures change

    Stroke-related alterations in inter-areal communication

    Get PDF
    Beyond causing local ischemia and cell damage at the site of injury, stroke strongly affects long-range anatomical connections, perturbing the functional organization of brain networks. Several studies reported functional connectivity abnormalities parallelling both behavioral deficits and functional recovery across different cognitive domains. FC alterations suggest that long-range communication in the brain is altered after stroke. However, standard FC analyses cannot reveal the directionality and time scale of inter-areal information transfer. We used resting-state fMRI and covariance-based Granger causality analysis to quantify network-level information transfer and its alteration in stroke. Two main large-scale anomalies were observed in stroke patients. First, inter-hemispheric information transfer was significantly decreased with respect to healthy controls. Second, stroke caused inter-hemispheric asymmetries, as information transfer within the affected hemisphere and from the affected to the intact hemisphere was significantly reduced. Both anomalies were more prominent in resting-state networks related to attention and language, and they correlated with impaired performance in several behavioral domains. Overall, our findings support the hypothesis that stroke provokes asymmetries between the affected and spared hemisphere, with different functional consequences depending on which hemisphere is lesioned

    Topology and energy transport in networks of interacting photosynthetic complexes

    Get PDF
    We address the role of topology in the energy transport process that occurs in networks of photosynthetic complexes. We take inspiration from light harvesting networks present in purple bacteria and simulate an incoherent dissipative energy transport process on more general and abstract networks, considering both regular structures (Cayley trees and hyperbranched fractals) and randomly-generated ones. We focus on the the two primary light harvesting complexes of purple bacteria, i.e., the LH1 and LH2, and we use network-theoretical centrality measures in order to select different LH1 arrangements. We show that different choices cause significant differences in the transport efficiencies, and that for regular networks centrality measures allow to identify arrangements that ensure transport efficiencies which are better than those obtained with a random disposition of the complexes. The optimal arrangements strongly depend on the dissipative nature of the dynamics and on the topological properties of the networks considered, and depending on the latter they are achieved by using global vs. local centrality measures. For randomly-generated networks a random arrangement of the complexes already provides efficient transport, and this suggests the process is strong with respect to limited amount of control in the structure design and to the disorder inherent in the construction of randomly-assembled structures. Finally, we compare the networks considered with the real biological networks and find that the latter have in general better performances, due to their higher connectivity, but the former with optimal arrangements can mimic the real networks' behaviour for a specific range of transport parameters. These results show that the use of network-theoretical concepts can be crucial for the characterization and design of efficient artificial energy transport networks.Comment: 14 pages, 16 figures, revised versio

    Quantum Brachistochrone Curves as Geodesics: Obtaining Accurate Minimum-Time Protocols for the Control of Quantum Systems

    Get PDF
    Most methods of optimal control cannot obtain accurate time-optimal protocols. The quantum brachistochrone equation is an exception, and has the potential to provide accurate time-optimal protocols for a wide range of quantum control problems. So far, this potential has not been realized, however, due to the inadequacy of conventional numerical methods to solve it. Here we show that the quantum brachistochrone problem can be recast as that of finding geodesic paths in the space of unitary operators. We expect this brachistochrone-geodesic connection to have broad applications, as it opens up minimal-time control to the tools of geometry. As one such application, we use it to obtain a fast numerical method to solve the brachistochrone problem, and apply this method to two examples demonstrating its power.National Science Foundation (U.S.) (Project PHY-1005571)United States. Army Research Office. Multidisciplinary University Research Initiative (Grant W911NF-11-1-0268)National Science Foundation (U.S.) (Project CCF-1350397

    Score Function Gradient Estimation to Widen the Applicability of Decision-Focused Learning

    Full text link
    Many real-world optimization problems contain unknown parameters that must be predicted prior to solving. To train the predictive machine learning (ML) models involved, the commonly adopted approach focuses on maximizing predictive accuracy. However, this approach does not always lead to the minimization of the downstream task loss. Decision-focused learning (DFL) is a recently proposed paradigm whose goal is to train the ML model by directly minimizing the task loss. However, state-of-the-art DFL methods are limited by the assumptions they make about the structure of the optimization problem (e.g., that the problem is linear) and by the fact that can only predict parameters that appear in the objective function. In this work, we address these limitations by instead predicting \textit{distributions} over parameters and adopting score function gradient estimation (SFGE) to compute decision-focused updates to the predictive model, thereby widening the applicability of DFL. Our experiments show that by using SFGE we can: (1) deal with predictions that occur both in the objective function and in the constraints; and (2) effectively tackle two-stage stochastic optimization problems
    • …
    corecore